

AUTONOMOUS VESSELS -R&D AND ECOSYSTEM

1

Ørnulf Jan Rødseth MSc Senior scientist, SINTEF Ocean AS General Manager, Norwegian Forum for Autonomous Ships

SINTEF Ocean

From January 2017, a merger of:

- MARINTEK
- SINTEF Fisheries and Aquaculture
- SINTEF Environmental Chemistry
 Not-for-profit, independent
 Contract research
 360 employees

Autonomous systems at SINTEF

() SINTEF

Applied research, technology and innovation

Expertise from ocean space to outer space:

Renewable energy

Ocean space

Industry

Buildings and infrastructure

Materials

Micro-, nano- and biotechnology

Climate and environment Oil and gas

Health and welfare

نلى

Digitalization

Transport

Possible **game changers** in Shipping 4.0:

SINTEF

- Digitalization of commercial shipping processes
- Autonomous and unmanned ships

5

What is Ship Autonomy?

"Levels" of autonomy

Complexity: Operational Design Domain and Dynamic Navigation Task

Types of autonomous ships – manning levels

Ship type	Always on Bridge	Available on Ship	Never on Bridge
AAB	X		
PUB		x	
PUS			x
CUB			x
CUS			x

SINTEF

Completely unmanned gives largest benefits!

No accommodation Less power More cargo

No safety equipment New constructions

No crew

Enables completely new transport system concepts No crew related costs

NCE Maritime Clean Tech & NCL

Operational autonomy levels

() SINTEF

A Shore Control Centre (SCC) is normally needed

Ship autonomy types

Level \\ Crew	Always on bridge	Available on board	Never on Bridge
Decision support	Decision Support	Remote Control	Remote Control
Automatic	Automatic Bridge	Automatic Ship	Automatic Ship
Constrained autonomy	-	Constrained Autonomous	Constrained Autonomous
Full autonomy	-	-	Fully Autonomous

Types of autonomous ships

Yara Birkeland

- Yara fertilizer
- Fully electric
- Replaces 40 000 truck trips a year

Autonomous Ship Transport at Trondheimsfjorden (ASTAT)

- Short voyages
- 12-50 TEU
- Inland, fjords/sheltered
- Low cost: Wait in port
- Legs 4-12 hours
- Port cranes
- Automated berthing
- Batteries

SINTEF

Hrönn: Unmanned offshore vessel

- Light-duty, offshore utility ship
- Commissioned in 2017, in operation 2018
- Initially for man in the loop applications
- Tested in Trondjemsfjorden test area

- On-demand passenger ferry
- Max 12 persons + bicycles
- Electrical propulsion, battery
- Inductive charging at quay

Centre for Autonomous Marine Operations and Systems

Linking center of Trondheim to seaside and rail station

Highway car ferries

Coordinated car arrival (ITS)

Flexible capacity

Medium distance unmanned RORO

For trucks changing driver at national borders or when rest is needed.

SINTEF

Deep sea is feasible, but not first mover ?

- 10 000 TEU container vessel
- Shanghai Los Angles
 - Two states involved
 - 6000 nm, open sea
 - No channels
 - Short port approach
 - Remote control to port
- Dual propulsion systems
- Two stroke diesels
- Biofuel, methanol ...

... but, autonomous ships are <u>not</u> conventional ships without crew.

Some prioritized research areas

Advanced sensor and control systems

New detectors in IR and daylight video. Improved radars.

Sensor fusion and classification: AIS, Radar and video Automatic manoeuvring and anti-collission.

General ship system redundancy and communication systems integration.

Cyber security

GNSS spoofing

University of Texas at Austin

 Communication system security

Virus and other malware

SINTEF

Wikimedia.org/Caricato da Makki98

Improved maintenance planning & management

Maintenance

systems

MANAGEMENT HQ

• TCI Efficiency

TCI Degradation

TeCoMan

• TCI Balance

SHIP

Redundancy

Report: Performance Assessment / Support

Ship Performance Registrations

Minimize complex systems onboard

No heavy fuel oil

SINTEF

Efficient infrastructure on shore

Shore control, VTS interface

Tugs, docking, mooring

Loading and discharge of cargo

Risks and accept criteria for autonomous ships

Fig 1 – Illustrative FN-Criteria

Comparisons between modes (car vs. ship)

Things are bigger and move slower

Advanced technology already in place

SINTEF

More space, less obstacles

Legal and liability issues

• UNCLOS

• SOLAS

wikimedia.org/paolodefalco75

New transport system design

Logistics

Process changes

More complex ship systems

No maintenance on board

Shore Infrastructure

SINTEF

National and international ecosystem

MUNIN: A concept study for a fully unmanned handymax dry bulk carrier on intercontinental voyage.

- Duration: 01.09-2012 31.08.2015
- Funding: 2.9 million EUR of budget 3.8 million EUR
- Activity code: SST.2012.5.2-5: E-guided vessels the 'autonomous' ship

NTNU AMOS

D NTNU AMOS Centre for Autonomous Marine Operations and Systems

- Supported by Norwegian Research Council
- Norwegian "Centre of Excellence"
- Established 2013
- Planned for 10 years
- Total budget approx. EUR 80 million

https://www.ntnu.edu/amos

Test area Trondheimsfjorden

- Established September 30th 2016
 - Industry, university, research
 - Port of Trondheim
 - Norwegian Maritime Administration
 - Norwegian Coastal Administration

- Area covers Trondheimsfjorden
 - Permits
 - Instrumentation and communication
 - Exchange of experience

SINTEF

Test areas - status

- Trondheimfjorden and Storfjorden are established
- Horten to be announced shortly
- Grenland to be announced next year
- Tromsø possible next

Norwegian Forum for Autonomous Ships

- Established October 4th 2016
- Operated as a joint industry project at SINTEF Ocean.
- General Manager is Mr. Ørnulf Jan Rødseth.
- A board of governors overseeing operations. General assembly approves budgets and strategies.
- 42 Institutional Members
 - Including Industry, authorities, class, insurance research, universities, ports ...
 - 2 other institutions as personal members

http://nfas.autonomous-ship.org

National and international collaboration

International Network for Autonomous Ships

- Agreed on at meeting in Oslo Oct. 30th 2017
- Hosted by NFAS and SINTEF
 Ocean
- 22 participants and 10 countries at meeting
- 2 correspondent countries
- First inland meeting in Trondheim November 6-7

- Shipping 4.0 will be a game changer in autonomy and digitalization.
- Development of autonomous ships is rapidly progressing.
- Current projects based on new business models.
- Many research challenges, competitive and non-competitive
- International cooperation is being established.

Technology for a better society