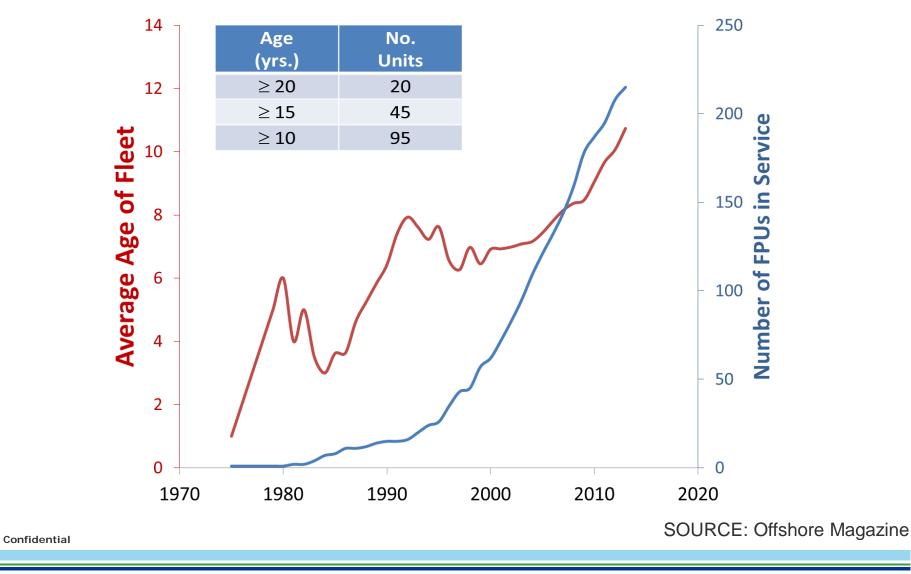
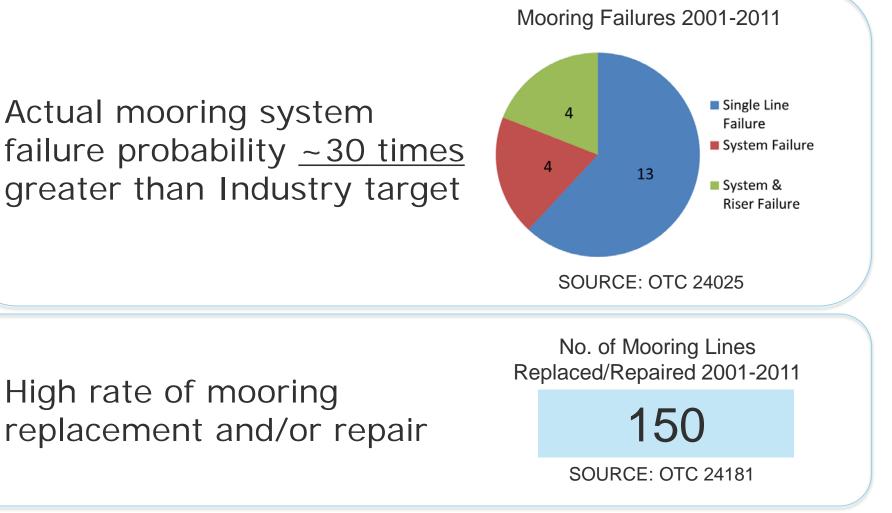
DNV·GL

OIL & GAS

MI@NUS ASSET INTEGRITY & RISK MANAGEMENT R&D WORKSHOP 2014

CURRENT DEVELOPMENTS IN MOORING INTEGRITY MANAGEMENT


James Laybourn 19th November 2014


Introduction

- Moored Floating Production Unit (FPU) fleet is experiencing rapid growth
- Moored FPU fleet is aging and life extension is often a consideration
- Many different operating areas, environments and water depths
- Mooring incidents have been occurring at a relatively high rate
- Incidents have resulted in the following:
 - Vessel drifting
 - Riser ruptures
 - Hydrocarbon release
 - Production shutdown

Aging FPU Fleet

Is a single line repair or break a failure?

- Mooring typically designed to last the life of the field development
- Line replacement / repair is frequently required prior to end of field design life
 - Costly, especially if no spare exists or the field is in a remote area
- Can an FPU continue production with one mooring line missing?
 - Criteria require adequate SF for 1-line damage case in design environment
 - Safety case regimes (NMD, UK HSE) now requesting 2-line damage case
 - However, once a line is missing, mooring system has reduced reliability
 - Experience has shown that line replacement can take one year or more
- Clearly there is an incentive to prevent premature line failures

FPU Mooring Incident Claims (2006 – 2012)

Type of Loss	Claims Paid
Property Damage	US\$ 2.20 Billion
Business Interruption	US\$ 0.66 Billion
Total	US\$ 2.86 Billion

Confidential

6 DNV GL © 2014 19th November 2014

SOURCE: Matthews Daniel

DNVGL

Actions

- Industry is collaborating to improve understanding of causes of offshore failure
- Currently limited guidance available on Mooring Integrity Management (MIM)
- MIM recommended practice for industry in progress
 - Oil & Gas UK Mooring Integrity Guidance (Draft) Issue 2, June 2014
 - DNV GL Recommended Practice for Mooring Integrity In Progress
 - Floating Production System Mooring Integrity JIP Phase 2 (Ongoing)

Why do moorings fail?

Overload (Deepsea Atlantic 2012)

Heavy Narrow Wear (OTC 20613)

Fatigue (Transocean Spitsbergen 2012, Transocean Leader 2011, Norne 2012)

Corrosion (Africa)

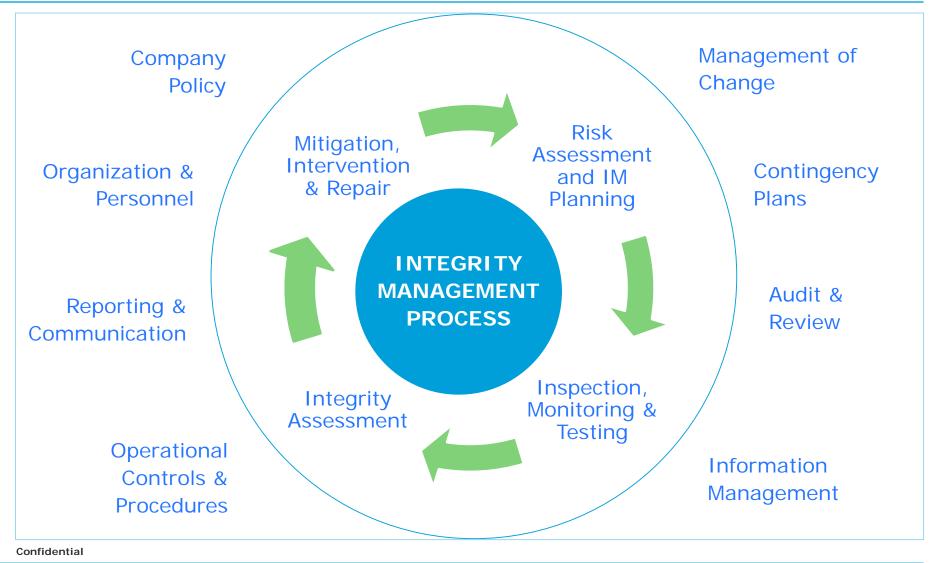
MIC (1800m WD)

- Fatigue
 - Fatigue test data for large diameter R5 chain (e.g. TWI JIP in progress)
 - Improved understanding of OPB impact on chain fatigue (e.g. SPM OPB JIP)
 - Improved understanding of chain fatigue crack growth (e.g. Lassen, 2005)
 - Improved FEA models of chain SCFs (e.g. Vargas, 2004)
- Wear
 - Improved chain wear models (e.g. NDE MIM JIP)
- Corrosion
 - Improved chain and wire rope corrosion models (e.g. SCORCH JIP)
 - Improved models of corroded chain residual strength (e.g. FEARS JIP in progress)
 - Improved reliability models accounting for corrosion deterioration over time

Confidential

SOURCE: DNV GL OTC 25134

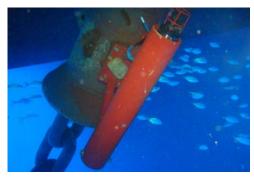
- Fatigue
 - Effect of chain twisting not adequately understood
- Wear
 - No universal wear model
- Corrosion
 - No universal corrosion model


Confidential

SOURCE: DNV GL OTC 25134

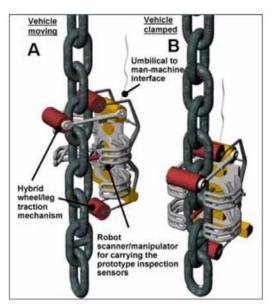
- Manufacturing Defects
 - Low toughness mooring components
 - Chain post heat treat weld repairs
- Installation and Accidental Damage
 - Jacket damage on spiral strand rope during installation
 - Polyester rope accidental damage (e.g. from ROV umbilical)
- Design Shortcomings
 - Design codes require updating
 - Connecting hardware contact with seafloor
- Pollution

PREVENTABLE!


Mooring Integrity Management

Monitoring Advances

- Position Monitoring
 - DGPS can detect change of movement behaviour
- Tension Monitoring
 - Innovative instruments and acoustic data transmission have made long term line monitoring viable
 - Needed to monitor for failed line
 - Used to assess mooring performance
- Material Monitoring (under development!)
 - For long term monitoring of line corrosion



Inspection Advances

- In-situ inspection of mooring line is difficult and costly
 - Most inspections are General Visual Inspections (GVI) made using ROV camera
- Some Specialised Inspection Techniques
 - Chain
 - Mechanical & optical calipers
 - Alternating Current Field Measurement (ACFM)
 - Under development
 - Rope
 - Optical
 - Magnetic
 - Connectors
 - 3D HD video

Optical Caliper (Welaptega CMS[™])

TWI ChainTest[™] (under development)

Concluding Comments

- Overall safety performance of industry is good but with room for improvement
- Many joint industry research activities ongoing to understand failure mechanisms
- Class and Industry are working together to create recommended practice for MIM
- Technological developments are improving monitoring and inspection methods
- Open sharing of mooring failure data through forums such as the Mooring Integrity User Group is very important toward improving mooring performance
- Moorings systems, unlike vintage wines, do NOT improve with age!

Thank you for your kind attention

James Laybourn James.laybourn@dnvgl.com +65 9232 2089

www.dnvgl.com

SAFER, SMARTER, GREENER