

CREATING GROWTH, ENHANCING LIVES

DISPERSION ANALYSIS AND SIMULATIONS FOR HANDLING OF FUTURE FUELS

DASH Team Vinh-Tan Nguyen ● A*STAR IHPC 7 November 2024

ARES Confidential

in collaboration with:

Maritime Energy & Sustainable Development Centre of Excellence College of Engineering

Adopting alternative fuels is important in energy transition

Applications of Advanced Modelling, Simulations and AI for Risk Assessment

The world's first ship-to-container ship bunkering in Singapore, **July 2023** First Successful Simultaneous Methanol Bunkering for Container Vessels and Cargo Operation (SIMOPS) , **May 2024**

https://www.mpa.gov.sg/mediacentre/details/singapore-is-ready-for-methanolbunkering-for-container-vessels-at-tuas-port-withfirst-successful-simultaneous-methanol-bunkeringand-cargo-operation Suiso Frontier: world's first bulk liquefied hydrogen carrier, **Aug 2023**

https://www.mpa.gov.sg/mediacentre/details/singapore-hosted-the-world-s-firstbulk-liquefied-hydrogen-carrier-suiso-frontier-tothe-port-of-singapore Green Frontier: a retrofitted vessel with 4-stroke engine running on a blended ammonia-diesel. Fuel transfer and commissioning, **Feb 2024**

https://www.mpa.gov.sg/media-

<u>centre/details/world-s-first-use-of-ammonia-as-a-</u> <u>marine-fuel-in-a-dual-fuelled-ammonia-powered-</u> <u>vessel-in-the-port-of-singapore</u>

Physics of accidental releases and dispersions

Advancing Modelling, Simulation & Al for Safe Adoption of Future Fuels

DASH aims at (1) addressing challenges and gaps in modelling & simulations for risk assessment of future fuel bunkering and (2) translating advances in M&S techniques into operational tools.

Coupled mesocale with microscale models; coupled atmosphere-ocean-wave model

Downscaling; coupled surface boundary conditionsNear-field and far-field coupled model

Two phase release from accidental leakages of liquid fuels

- Phase change, flashing, rain-out from pressurized or refrigerated states
- Solubility of two-phase mixture in (sea) water
- Effects of humidity on buoyant vapour during dispersion process

Uncertainties and **accuracy** of multiphysics coupled models for plume dispersion

- Validation of numerical models with experiment and field trials
- Prediction with uncertain environmental conditions (surface layer wind conditions, wave and current)

Quick detection of leakages and fast prediction of plume dispersion reducing impacts on human, assets and environment.

Fast response sensors and robust sensor network to detect leakages
Fast models for emergency response and preparedness

DASH: Dispersion Analysis and Simulation for Handling of Future Fuels

Empowering *planning, preparedness, mitigation and emergency response* with model-based decision support system using digital tools developed with advances in

- Near and far field physics: release sources, dispersion, and consequences coupled with weather & ocean forecast
- Accelerated prediction with hybrid physics-based and data-driven surrogate modelling
- Validation of models with experiment and demonstration effectiveness of mitigation measures

MESO/MICRO-SCALE ENVIRONMENT FORECAST

down-scaling forecast; air-sea wind-wave *coupling*; near field-far field coupling

ENHANCED & VALIDATED PHYSICS MODELS

two-phase physics; vapour –water interactions; *validation* with field experiments

INTEGRATED SYSTEM

Integration of models for operational tools with practical use-case demonstrations

FAST SURROGATE MODELLING

Hybrid models: physics-based machine learning (ML) and data-driven predictive models for environmental conditions, dispersion towards *real-time* monitoring

Coupled mesoscale-microscale forecast of environment conditions

Developing a suite of models that can be used to dynamically downscale the atmospheric forecasts from the global models to the local Singapore domain.

Ocean hydrodynamic forecast from regional to local domain coupled with atmospheric forcing for predictions of tide and current in Singapore strait and beyond

Data assimilation techniques to enhance performance of local models for forecasting of environment conditions

Enhancing model accuracy with multiphase and coupled physics for plume dispersion simulations

Advanced models for two-phase release providing more accurate prediction of vapour plume dispersion

Coupled weather and hydrodynamic forecast with dispersion in air and dissolution in water for comprehensive consequence analysis of accidental releases.

Validation of models with lab-scale and field release experiment for accuracy and uncertainty quantification

Lab-scale &	Small scale	Deployment	MeOH	NH3
sensorizing	outdoor test	test on site	release	release
Real-scale	Set-up of release system	Field test of	Full scale field	Full scale field release of
functionality,	and airborne	measurement	MeOH with	NH3 with mitigation and
calibration.	sensor tests;	Release of	dispersion	dispersion
Marine sensing	test at JI site	small amount MeOH/NH3	in air and underwater	in air and underwater

Phase-gated field experiment campaign for validation of developed models

- Release over (sea) water surface
- Dispersion both in air and water column
- Effects of local climate conditions

DASH: Comprehensive verification and validation to quantify *uncertainty* and *sensitivity* in prediction

Tapping on existing/available data and future experiment to comprehensively validate models developed in DASH programme

- Quantifying model errors, uncertainties (epistemic vs aleatory)
- Reports and documentations

Observational Data

Existing weather station (AWS)

Data from 24+ stations across the island for validation/benchmark of atmospheric forecast model

Tidal Gauges, ADPC

Current and wave monitoring stations around Singapore for validation of hydrodynamic forecast models **Onsite sensors (MESN, NEPTUNE, etc)**

Both surface wind + hydrodynamic monitoring for validation of near field wind map, hydrodynamic models

Experiment Data

ASTI experiment (MESD/IHPC [TBC] ammonia release on land, release under water.

Post release impact and mitigation evaluation (LCER2 funded):

lab-scale experiment for ammonia absorption and mitigation effectiveness **Texas A&M Experiment [TBC]** (TAMU/ABS/IHPC/MESD): lab-scale controlled experiment for ammonia **Literature database**

Field Release Exp

WP5: controlled release of ammonia and methanol:

Field release of ammonia/methanol: in tropical climate for validation of developed models Local experiment with tropic conditions **Chemspill exercises**: releases of proxy liquids and collecting data for validation of models + testing of monitoring and mitigation

technologies (drones, water spray)

DASH: Translating advances in modelling and simulations into operational outcomes for future fuel handling

Validation of the developed models with experiment; **benchmark** with existing tools commonly used in the industries.

Integrated tools for capacity & operational planning, incident management & emergency response

- Acceleration prediction with datadriven and physics-based machine
- learning surrogate models for
- localized weather & hydrodynamic forecast, plume dispersion

Future *bunkering trials, chemspill exercises* as live test best for demonstration of capabilities

Coupling and integration of **models** for risk assessment and development of effective mitigation measures

Industrial use-cases: Newly designed and built alternative fuel powered vessels, Proof-of-concept tools for commercialization

Translatable Outcomes

Outlook

Atmospheric and ocean forecast coupled with environmental impact assessment

Assessment and identification potential bunkering sites

Understanding and modelling complex physics associated with pressurized or refrigerated alternative fuels upon release into environment

- Phase change and two phase release: flashing, rain-out
- Solubility of two-phase mixture in (sea) water

Fast detection and subsequent response to accidental leakages reduces impacts on human, assets and environment.

Fast models for emergency response and preparedness

THANK YOU

for your attention