

SAFETY 4.0: Al-Driven Ship Safety Management System

Presenter: YUEN Kum Fai

Designation: Assistant Professor, School of Civil and Environmental Engineering (CEE), NTU

Co-Director, Centre of Excellence for Energy and Sustainable Development (MESD), NTU

What is Safety 4.0?

- A new generation of workplace safety and health management systems deploying Industry 4.0 technologies
- Proactive, predictive approach by using technologies to identify risks and create a safe and healthy work environment

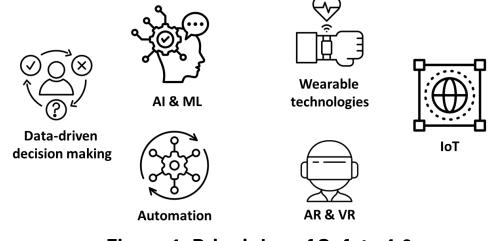
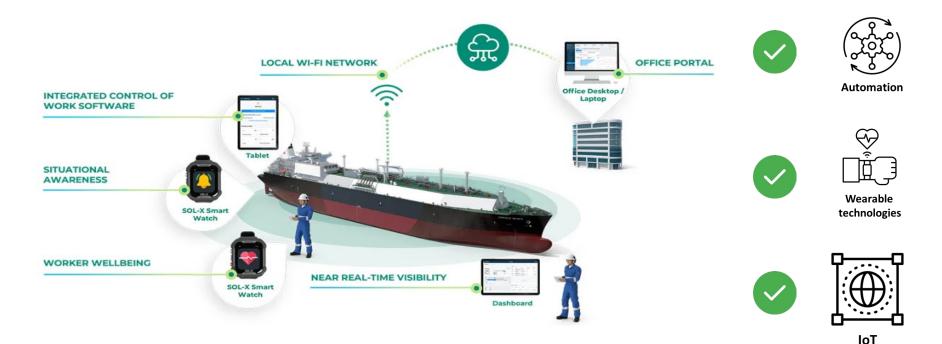


Figure 1. Principles of Safety 4.0

What is Safety 4.0?

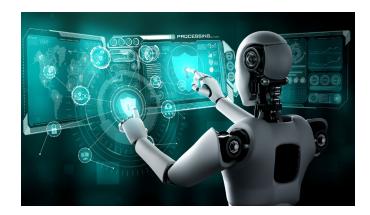
• Developing Safety 4.0 technologies for *shipboard operations* is now feasible with the following enablers:

Automation, wearable technologies & digitalisation



Extensive maritime safety & health data in digital format

Advancement in AI methodologies & risk analytics


Technology Scan of Safety 4.0 Tools

State-of-the-art Digital Safety Management System (SOL-X by MagellanX)

Project Goal

• Support decision-making by integrating AI capabilities into digital safety management systems to (1) identify, monitor and assess safety and health risks in real-time and (2) recommend suitable risk control measures

Illustrations of AI managing risks in shipboard operations

Conditions for AI Implementation

- 1. Defined Goals & Use Case: What <u>should</u> AI monitor and control?
 - *Risk Identification*: What key risks are currently faced by the ship and each seafarer?
 - *Risk Assessment*: What is the combined likelihood and consequence of each identified risk?
 - *Risk Control*: What measures can be implemented to manage high-risk events?
- 2. Overcoming Constraints: What <u>can</u> AI monitor and control?
 - Data Availability & Quality: Are there relevant and useful data supporting the monitoring, identification, and assessment of risks? If not, are there proxies for these data?
 - *Ethical and Regulatory Considerations*: Are the AI-generated recommendations fair, unbiased, and compliant with existing regulatory frameworks?
 - System Integration & User Centric Design: Can AI integrate smoothly with existing data infrastructure and workflows? Is the interface user-friendly and transparent?

• A hybrid decision support system (DSS) is designed by (1) developing a predefined set of expert rules (i.e., logic-based algorithms) and (2) learning from historical data (i.e., data-driven algorithms)

Knowledge based: Relies on domain knowledge from occupational health and safety experts to specify risks

Rule-based logic: Mimics human decision-making process using *'if-then'* rules to diagnose or predict risks

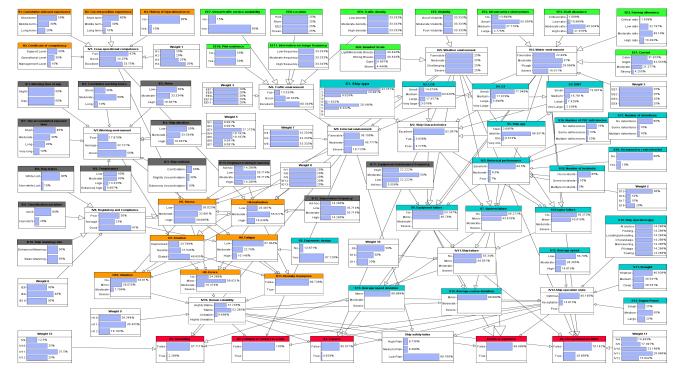
Predefined scenarios: Limited by the rules preestablished by experts; incapable of adapting to new scenarios

Learning-based DSS

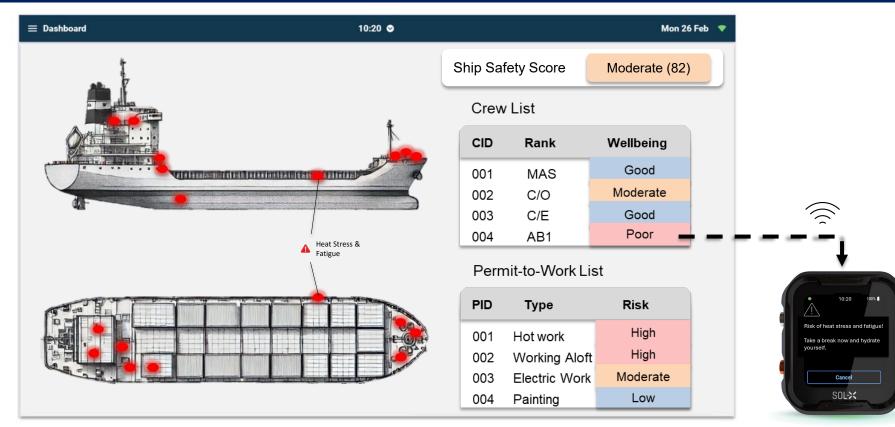
Data-driven: Relies on datasets from incident and accident records, risk probabilities, medical history and meta-analysis to specify risks

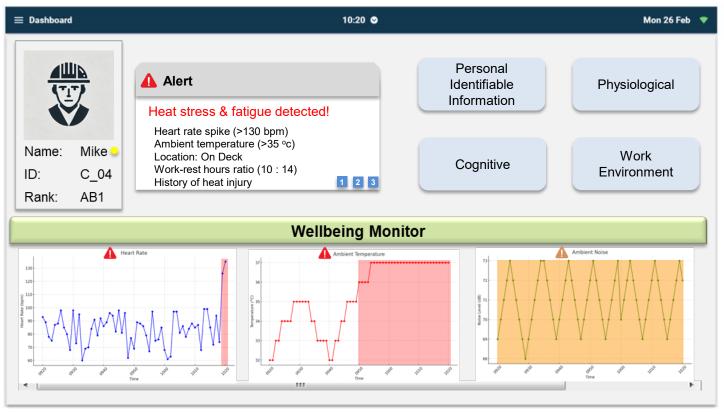
Predictive analytics: Assesses and predicts risks based on learned patterns through supervised and unsupervised learning

Data availability and ambiguity: Limited by availability and quality of data, and challenges with black boxes



Primary Indicators:						
Secondary Indicators:	12	31				
Tertiary Indicators:	51	-				
	Static & Dynamic					
	Lagging & Leading					


2. Risk Assessment and Scoring:


Bayesian Network Model for Ship Safety

3. Immediate Risk Control & Long-term Continuous Improvement:

- Real time scoring and identification of critical nodes (i.e., risk indicators) that contribute to *immediate* risk
 - Identify and simulate interventions that can control immediate, critical risk
 - Send prompts and interventions to users
- Recommend best practices to management and operations to address persistent, long-term risk to improve ship safety score

Immediate Risk Detection and Intervention (Illustration)

Immediate Risk Detection and Intervention (Illustration)

E Dashboard		10:20 🛇			Mon 26 Feb		
新加	Mertion	Ship-to	-Ship Collision Mo	nitor	ON		
Singa	ipore	A 1	A High near-miss collision risk is detected!				
KreppelsViadr,ct	- w	ID	MMSI	Distance	Near-miss risk level		
	ک 3	1	311906000	0.2	High		
勿拉尼岛 Brani Island	Θ_1	2	325913002	0.3	Medium high		
淘沙	2.	3	301943520	2.1	Medium		
intosa							
Sebana; MY - Harbourfront;	56	Ship-to-Facility Collision Monitor			ON		
Location	Malacca Channel	Port approached, monitor activated: Collision warning!					
Speed	10.5	Facility	type Location	Distance	Time-to-Collision		
Heading	5	Harbor	wall Singapore por	t 0.02	3 min		
Draught	8.6	Casualt	y-Cum-Pollution Mo	nitor	OFF		
Lon	127.944961						
Lat	34.226205	<i>This monitor will be activated when a casualty occurs.</i>					

Immediate Risk Detection and Intervention (Illustration)

 \equiv Dashb

•



- **Enhanced safety and well-being:** Real-time risk assessment and prediction of hazards and risks
- **Cost savings**: Risk management models help avoid incidents that could result in costly repairs, downtime, loss of cargo
- **Increased crew confidence**: Real-time risk assessment tools can increase crew confidence in their own safety and the safety of the ship
- **Scalability**: Solution has potential applications on other industries or sectors (e.g., oil and gas, tunnelling, construction or mining)

Thank You

